

Projecto DOSE DATAMED II: uma perspectiva nacional

Pedro Teles

Grupo de Protecção e Segurança Radiológica Centro de Ciências e Tecnologias Nucleares Instituto Superior Técnico

Introdução

O aumento da exposição a radiações ionizantes devido a aplicações médicas tem aumentado globalmente, tendo atingido ou mesmo superado o valor relativo a exposição a radiação 'natural' (NCRP 160 - EUA; RP 154 e RP 180- EU; UNSCEAR 2008-vol1) (Nações Unidas).

Justificação Optimização

Problemática com múltiplas vertentes

- Se é claro o benefício da tecnologia que utiliza radiações ionizantes tanto do ponto de vista diagnóstico como terapêutico, devemo-nos questionar se este aumento não terá repercussões ao nível do aumento do risco radiológico para as populações;
- Em termos de Protecção Radiológica surge a necessidade de conhecer e quantificar esta exposição. Os 3 princípios aplicam-se, incluíndo o da justificação (ex: justifica-se a utilização deste equipamento preterindo outro? Justifica-se a utilização deste valor de actividade?) e claro o da optimização.

DOSE COLECTIVA

- D_c=N*⟨D⟩ , em que N é o número total de indivíduos expostos e ⟨D⟩ o valor de dose efectiva média da respectiva exposição (manSv)
- Normalmente para dados de países utiliza-se o valor anual e per caput (ou seja dose colectiva anual por habitante em Sv/ Caput)

Dose Colectiva

- Foi inicialmente desenvolvido para radiação natural (radão, etc);
- É um bom indicador para avaliar a dimensão do risco associado à exposição de um grande número de pessoas a um agente radioactivo;
- Nas aplicações médicas?
- Modelo demasiado simplista pois agrega demasiada informação (não leva em conta o tipo de procedimentos, a variabilidade anatómica, fisiológica dos indivíduos, exposição acumulada/não-acumulada, contínua/nãocontína, etc);
- · No entanto é uma quantidade relativamente simples de determinar.

Relatórios da Comissão Europeia : RP 154, RP 180 utilizam dose colectiva para avaliar a exposição europeia a radiação ionizante devido a aplicações médicas.

A tendência global

Preocupação crescente por parte das instâncias e organismos internacionais sobre esta problemática - é a primeira vez na história da humanidade que 'nos expomos' a mais radiação ionizante do que a que nos expõe a Natureza, e isto devido a aplicações médicas.

A nível nacional: As autoridades dos diversos países requisitam a avaliação periódica das suas populações a radiação ionizante devido a aplicações médicas, em alguns casos há bastantes décadas;

- Legislação (e aplicação desta) adequada;
- 'Top-down approach'

A realidade portuguesa

- A avaliação de doses na população na população portuguesa é uma obrigação legal (Artigo 14°, alínea h) do Decreto-Lei n.º 165/2002, alterado pelo Decreto-Lei nº 29/2012, de 9 de Fevereiro)
- Até 2010 esta avaliação não foi feita (apenas estudos-piloto)
- Em 2010 a avaliação foi feita num contexto europeu
- Foi criado um grupo 'ad-hoc' de investigadores, profissionais de saúde, técnicos, funcionários públicos para dar resposta a este problema
- 'Bottom-up' approach

Avaliação da Exposição da População Portuguesa a Radiações Ionizantes devido a Exames Médicos de Radiodiagnóstico e Medicina Nuclear

O projecto Dose Datamed II (DDM II)

- O projecto DDM II (2010) surge assim como uma oportunidade única para a realização de um primeiro trabalho de avaliação da exposição portuguesa a radiações ionizantes devido a exames médicos (neste caso foram considerados exames médicos de radiodiagnóstico e medicina nuclear)
- Em Maio de 2010 o consórcio Dose Datamed Portugal foi criado, congregando um número significativo de instituições portuguesas com interesse na área da saúde (Relatório do projecto DDM Portugal disponível online em: http://www.itn.pt/projs/ddm2-portugal/Relatorio_Dose_Datamed2_Portugal.pdf)
- Os resultados obtidos foram enviados em tempo útil para a CE e constam do RP 180 da CE.
- Com este projecto pretendia-se dar os primeiros passos no sentido de estabelecer um programa de avaliações de dose colectiva periódico na população portuguesa.

Metodologia

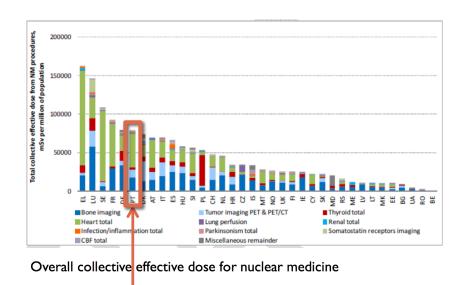
Avaliação da Exposição da População Portuguesa a Radiações Ionizantes devido a Exames Médicos de Radiodiagnóstico e Medicina Nuclear

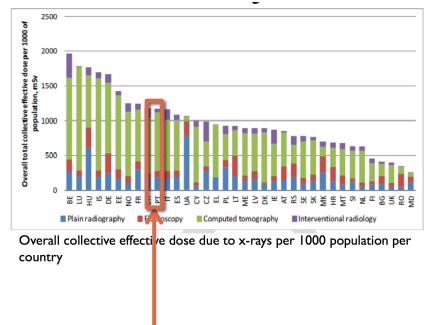
RP 154

- Top 20 (20 exames de radiodiagnóstico identificados como os mais frequentes)
- Compreender o sistema de saúde português
- Colheita de dados para determinação de frequência de exames Top 20 (ARS, APIC, ADSE, Hospitais)
- Colheita de dados para determinação de frequência anual e actividade média de 40 exames de medicina nuclear
- Estudos anteriores para determinação de dose típica por exame Top 20

Resultados (2010)

- Dose colectiva para exames de medicina nuclear : ~0.080±0.008 mSv/caput
- Dose colectiva para exames de radiodiagnóstico (Top 20): ~0,88±0,30 mSv/caput
- Portugal encontra-se a nível europeu num grupo de países de exposição média/alta





Os exames Top 20 (65-80% dose total)

Radiografia			
1. Tórax	Frente (PA) e Perfil		
2. Coluna Cervical	Frente e Perfil		
3. Coluna Dorsal	Frente e Perfil		
4. Coluna Lombar	Frente e Perfil		
5. Mamografia	Crânio Caudal e Oblíqua Médio Lateral (4 incidências)		
6. Abdómen	Frente		
7. Bacia e anca	Frente ou Frente + Perfil Anca		
Radiografia / Fluoroscopia			
8. Transito esofago-gastro-duodenal	2 a 3 min fluoroscopia - 5 a 20 imagens		
9. Clister Opaco	~2 min fluoroscopia - 5 a 10 imagens		
10. Trânsito do intestino delgado	~5 min fluoroscopia - 5 a 20 imagens		
11. Urografia Intravenosa	Frentes AP após injecção de contraste		
12. Angiografia Cardíaca	~5 min fluoroscopia		
Todas as angiografias			
Tomografia Computorizada			
13. TC Crânio-encefálica	Com ou sem contraste		
14. TC Pescoço	Sem contraste		
15. TC Tórax	Com ou sem contraste, standard ou alta resolução		
16. TC coluna	Com ou sem contraste		
17. TC abdómen	Com ou sem contraste		
18. TC pélvica	Com ou sem contraste		
19. TC Toraco-abdómino-pélvico	Com ou sem contraste		
	ou TC aorta torácica ou abdominal com contraste		
Todas as TC			
Intervenção			
20.Angioplastia coronária	Com insuflação de balão, pode ter colocação de stent		
Todas as intervenções			

Resultados DDM II

- O Valor de dose efectiva colectiva média para UE27+EFTA é de 1,13 mSv/caput (Portugal ~1,0 mSv/caput)
- Os valores encontrados para os países europeus são apenas 1/3 dos valores encontrados para os EUA
- Contribuição elevada de exames TC de ~50% (também Portugal)
- Grande variação entre os diferentes países

Conclusões e falhas do projecto DDM Portugal

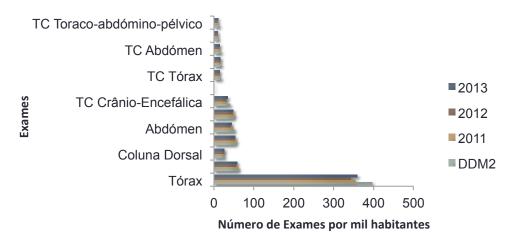
- ✓ Foi a primeira vez que foi efectuada a estimativa da dose colectiva em Portugal devido a exames médicos;
- ✓ O exercício congregou inúmeras instituições portuguesas com interesse na área da saúde o que contribuiu para o seu sucesso;
- ✓ Os resultados obtidos permitem 'situar' Portugal a nível europeu e possivelmente abrir caminho para repensar a situação da utilização das radiações ionizantes em medicina no país;
- ✓ Sensibilizar profissionais para o tema da utilização de radiações ionizantes em medicina.
- x Apenas os Top 20, incerteza na determinação da dose colectiva muito elevada (~30%);
- x Falha em sensibilizar as autoridades políticas para a necessidade de definir estas avaliações como obrigatórias e periódicas;
- x Falha em atrair o interesse ou sensibilizar não-profissionais;
- x Continuidade?

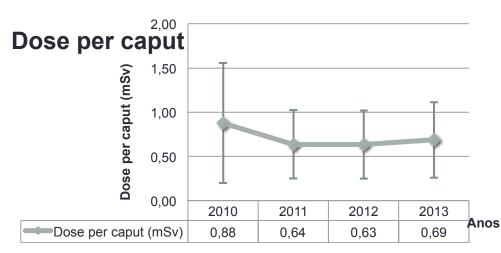
Continuidade - Linha do Tempo....

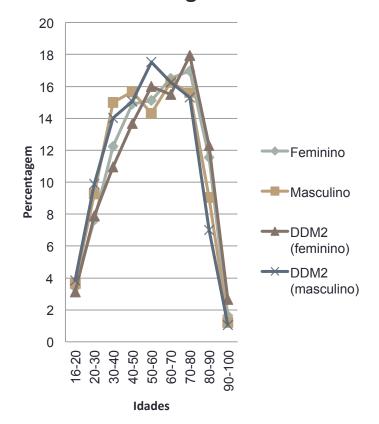
1992		2010	2013	2015
Estudo pioneiro por R Serro et al Population Dose Assessment from Radiodiagnosis in Portugal(Radiat Prot Dosimetry (1992) 43 (1-4): 65-68.)				
	Dose D	ape med	aliação da dose enas nos centros de dicina nuclear para 1 e 2012	Avaliação da dose radiodiagnóst e medicina nuclear (Carolina Ramalho)

(Filipa Costa)

TÉCNICO Continuidade

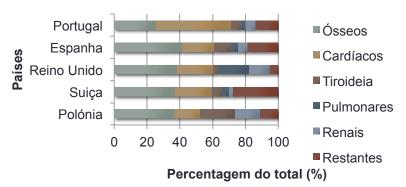

- Optimização dos resultados
 - Em 2013, realizou-se um estudo da avaliação da dose colectiva devido a exames de medicina nuclear para 2011, e 2012, onde a taxa de participação dos centros aumentou para quase 100%, diminuindo assim o erro na avaliação (F Costa, P Teles et al Revista Española de Medicina Nuclear 2015)
 - Em 2015, obtiveram-se resultados para os exames de radiodiagnóstico para os anos de 2011, 2012, 2013, 2014, tendo-se diminuído bastante a incerteza associada à dose típica por procedimento em exames de radiologia convencional graças a aquisição de novos dados. Conseguiram-se realizar curvas de frequência por sexo e idades (Tese mestrado Carolina Ramalho)



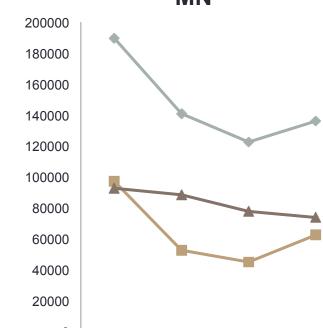

Últimos resultados - Top 20

Exames realizados TC e Radiografia

Distribuição de idades para radiografia



Últimos resultados - medicina nuclear


Frequeênicia anual de exames de MN

Ano	Dose coletiva total (manSv)	Dose coletiva total devido a exames cardíacos (manSv)	Dose coletiva total sem exames cardíacos (manSv)
2010	840,3±183,8	453,7	372,5
2011	625,6±110,9	248,3	377,4
2012	565,1±117,3	219,3	343,7
2013	779,9±171,3	418,5	361,5

Distribuição das frequências em percentagem do total

Frequência anual de exames de MN

0	An					
0	2010	2011	2012	2013		
Total de exames de MN	189689	140815	122448	136110		
Exames cardíacos	97154	52443	44870	62495		
Total de exames de MN sem exames cardíacos	92535	88372	77578	73615		

Conclusões

- Existe a possibilidade da realização periódica de estudos que permitam a determinação da dose colectiva em Portugal devido a exames médicos
- Esta análise tem vindo a ser feita desde 2010 de uma forma 'ad-hoc'
- Necessidade de sensibilizar os profissionais e nãoprofissionais para esta problemática
- Justificação/optimização das doses/procedimentos, BSS

Agradecimentos

- · Adriano Natário, Administração Central do Sistema de Saúde
- · Ana Gabriela Cardoso, Hospital Garcia de Orta
- · Ana Mendes, Administração Regional da Saúde Alentejo
- · Ana Pascoal, UK
- · Carlos Pires, Coordenador da Área de Gestão de Informação, ARS-LVT
- Fernando Tavares, ARS Norte
- · Hélder Pereira, Associação Portuguesa de Intervenção Cardiovascular
- · Isabel Lança, Administração Regional da Saúde Centro
- · Joana Santos, Professora Adjunta, ESTES-Coimbra
- Joaquim Azevedo, Administração Regional da Saúde Algarve
- · José Castanheira, ARS Norte
- · Luis Janeiro, Escola Superior de Saúde da Cruz Vermelha Portuguesa
- Luis Pires, ADSE
- · Maria Carmen de Sousa, Física Médica, IPOCFG, EPE
- Maria dos Anjos Neves, Investigadora Principal, CTN
- · Nuno Matela, Instituto de Biofísica e Engenharia Biomédica
- Nuno Teixeira, Escola Superior de Tecnologias da Saúde de Lisboa
- · Patrick de Sousa, LIP, Lisboa
- Paula Simãozinho, ARS Algarve
- · Pedro Carvoeiras, Medical Consult
- · Pedro Vaz, Investigador Principal, CTN, Coordenador da UPSR

Agradecimentos II

ARS NORTE

